[심층 학습] Linear Algebra (1)
12월 정도부터 Ian GoodFellow와 Yoshua Bengio의 Deep Learning이라는 책을 가지고 스터디를 하고 있는데, 난이도가 어느 정도 있는 편이라 차근 차근 정리를 해 나가려고 한다. 본인도 챕터가 지나면 지날 수록 이해가 안가거나 어려운 부분이 있으니 만약 내용이 틀렸거나 수정해야 할 부분이 있다면 댓글로 달아주길 바란다. 또한, 모르는 부분에 있어서는 글로 남겨두고 여러 사람들과 이에 대해 토론할 수 있었으면 좋겠다는 생각이 든다..ㅎㅎ 선형 대수와 확률 통계는 머신러닝과 딥러닝을 이해하는 데 있어서 중요한 도구로 많이 쓰인다. 이러한 학문의 범위는 매우 넓지만 이 책에서는 딥러닝에 필요한 부분만을 추려서 소개한다. 1. Scalars, Vectors, Matrices and..
2022.02.23